11.

Picaro A Stamp-like Interpreted Controller

Tom Napier

For years, Tom’s been itching to control the instruction sets of processors. Using a PIC, some memory, and an interpreter, he bypasses the processor hurdle and writes his own language. He shows you how to do it, too.

For as long as I’ve been using microprocessors — and I was designing the Intel 8080 into radiation-monitoring equipment in 1977 — I’ve always itched to have control over the instruction set. The makers always seem to leave something out. When I first encountered Microchip’s PIC microcontrollers, I realized that a chip with a built-in EPROM and a 200-ns instruction time could emulate, and outrun, other microprocessors. And if you write an interpreter, you can design any instruction set you wish.

Two years ago, I started developing a PIC-based tokenized Forth engine, but that idea went on the back burner. Then, inspired by Sojourner, I started designing a computer to control models. It would store its software in an EEPROM, so I could change its program on the move. Since the EEPROM has a serial interface, execution would be relatively slow but adequate for real-time control applications. I didn’t want to reinvent the Basic Stamp and I wasn’t sure implementing another Forth interpreter would be all that interesting, so I designed my own machine language. Since this little computer would be more adventurous than most, I decided to call it “Picaro.” (I was tempted to call it “Picard” but decided I couldn’t afford a fight with Paramount’s lawyers.)

HARDWARE IMPLEMENTATION


[image: image3.png]= vz

el 1 RL . e
IJuF Ie.&)luF Ie.oJuF 1ekQ PIC16CSE ISDA Ae?
= 4 12 1N 3 SER
[mer  Redl scL ma2-
= RTCC RAL] i ur WP z
rAZ| i CLOCK =L RNL
Pouer Table " A o IDATA Lo
Far: [750 [Gnd b e £
Uilia]s Taanhz ReofS -
ve [ & | 4 L s oce RBL
) 5
ree|
REES B
R4 gR3 i To
ke Z1ke Som|h i
REG]| e 2
13 il
re7) =y
=
RS 2RO ZRIL £RI2 ZRI3 SRL4 ZRIS ZRIS
m =1 - Toka $1oke 3 10ke 3 10ke 3 10ke 3 10Kke 5 1oke 3 1ok
Serial Port s e
N e
R 2R7 .
Toke 3 ioke 2 95 __ Fepcion
< [ J,c92 “Fart
R8 al 1 i
fe LEEae I
= +50
=





Picaro’s hardware couldn’t be much simpler. As you see in Photo 1, it’s built in a 2.1" x 1.35" x 0.6" plastic box on a piece of perf–board cut to fit.

The box contains an 18-pin PIC16C56 in a low-profile socket, a 24C16B EEPROM (also from Microchip), 16-pin I/O connector, stereo jack socket, a few resistors, a crystal, and a couple other parts, as shown in Figure 1. There’s room left over for a DIP chip having up to 20 pins, so you could add, for example, a serial DAC or ADC chip.

The I/O connector carries the power, reset, and timer pins and is compatible with a 16-pin ribbon cable connector. It has eight pins that can be programmed to be inputs or outputs.

Each pin has a 10-kΩ pull-up resistor and a 1-kΩ series resistor, and connects to one pin of the PIC’s eight-bit ports. This combination enables outputs to supply a voltage or current, and it protects the microcontroller from accidental overload.

When specified as an input, a connector pin can be connected directly to a switch contact (e.g., a limit switch on a moving part) without external components.

Photo 1 — The Picaro fits in a small space, but its commu-nication and control capabili-ties make it a giant.


As an output, each pin can drive an LED directly, but it can also drive a Darlington transistor and switch several amps on and off. Two pins of the PIC’s four-bit port connect to the EEPROM, which stores the user’s program. The other two pins, with the addition of some discrete components, make up a full‑function serial port, which is wired to the stereo jack.

[image: image1.png]



Figure 1. On the Picaro, when the serial connector is unused, serial I/O is present on the parallel port
This jack lets you program and control a model from the serial port of a portable computer (in my case, an ancient Tandy Model 100). No RS-232 driver chips or negative voltage converters are necessary. The negative output voltage comes from the device being driven, while a diode blocks the incoming negative signal voltage. When the jack plug is removed, the serial output switches to the 16-pin connector, enabling the model to have its own communications facility by radio, ultrasound, or infrared. The two communication links can run at different data rates.

BUILDING PICARO
If you’ve ever assembled a Swiss watch, this project should be easy. Now, I’m kidding, but you do need a delicate touch with a fine-pointed soldering iron. To squeeze the parts in, I cut short one row of pins on the I/O connector and wired them to cordwood–mounted series resistors. The 10-kΩ SIP is mounted under the connector pins and the eight-bit port pinout is out of order just to avoid lumpy wiring (shades of the S-100 bus).

I also drilled out the board so the PIC socket can be pushed into it, and then I cut down the protruding pins on the underside. Now, the lid closes tightly even when a windowed chip is used. The crystal and bypass capacitor fit inside the socket.

I bought the 6.144-MHz crystal, PIC, and EEPROM from Digi–Key. They also have suitable SIPs and right-angle connectors. The plastic case and serial I/O jack came from Radio Shack. The serial output transistor can be just about any small PNP type. I used an old European one with a low profile.

FIRMWARE IMPLEMENTATION

Picaro runs two languages. It can operate in system mode, responding directly to commands entered at a terminal connected to the serial port. These commands, listed in Table 1, enable the user to load and modify a program, read and modify memory, read or drive the I/O port, and initiate interpretation of a program.

Table 1 When Picaro is in system mode, it interacts with the user with single-letter commands. When it’s ready for a command, it outputs “>” and waits for input to be typed in.

D Addr
Display 16 bytes from the EEPROM

E Addr
Display and edit the EEPROM code

F Addr
Byte Fill 16 locations with the byte

G Addr
Go to address and start interpreter

I      
Display the input port

O Byte
Output the byte to the port

R Addr
Read and edit any byte from RAM

U     
Upload a program file (see sidebar)

The EDIT command displays the byte at the current address and waits for user input. If it’s a hex byte, it is written to that address, then the next address and its contents are displayed. Entering a space steps to the next address without changing anything, and Return exits you from the editor. The RAM editor uses the same syntax, except that it doesn’t step. It exits on any non-hex character. The on-chip EPROM also contains the interpreter. In interpreter mode, Picaro fetches and executes eight-bit instructions from the user’s program. This program is stored in EEPROM and retained when the power is off. You can change it whenever you wish even while the model is operating. On power–up, the user’s program, which starts at address 0 of the EEPROM, is executed until either a serial input is detected or a “jump to system” instruction is encountered.

I modeled this interpreted language on the machine languages of many small microprocessors, and almost all instructions are coded as single bytes. It has a regular structure, partly to make it easy to write and partly to make the interpreter as simple as possible. Despite its simplicity, however, this language can perform almost any programming task. I even threw in an 8- x 8-bit multiply instruction.

USER-PROGRAM MEMORY

The user program is contained in a Microchip 24C16B EEPROM. This 8-pin DIP chip has 2048 programmable locations, each containing 1 byte. It uses a serial input and output that can run at 400 kbps. With a 6.144–MHz crystal driving the PIC, the transfer rate is 192 kbps. Reading and interpreting an instruction takes around 60 µs (i.e., the computer executes about 17,000 instructions a second), which should be fast enough to control even a complex model in real time. Writing to the EEPROM is much slower than reading it. To change one instruction takes up to 10 ms. Luckily, up to 16 bytes can be loaded sequentially and written simultaneously, so uploading a program takes ~0.5 ms per byte. In practice, the 9600–bps serial link from the terminal is the bottleneck. Memory locations can be rewritten at least 100,000 times, so memory life isn’t a problem.

READ/WRITE MEMORY

The PIC16C56 has 32 one-byte RAM registers, which Microchip confusingly calls “files.” (Did someone copyright “register”?) Eight of these have special functions. For example, one is the program counter and others are I/O ports. I allocated the remaining 24 registers as eight system registers and 16 interpreter registers. That is, the interpreted program has access to 16 RAM locations, which are listed in Table 2.

Table 2. Registers 0–7 can be incremented and decremented.

Register
Function

0
The accumulator; where results end up

1
Can be used as an index register

2
Can be used as a multiplicand

3
Can be used as a multiplicand

4
General-purpose register

5
General-purpose register

6
General-purpose register

7
General-purpose register

8
General-purpose register

9
General-purpose register

A
General-purpose register

B
General-purpose register

C
General-purpose register

D
General-purpose register

E
Low byte of return address

F
High byte of return address

The interpreter is denied access to the system registers. However, it can read and write Port B, access the register storing the interpreter’s carry and zero flags, and indirectly access the two system registers that store the interpreter’s program counter. As you’ll see, the latter are rarely used.

INSTRUCTION SET

This language has 37 instruction types, listed in Table 3. It is accumulator based and has the usual complement of memory fetch and store instructions. It has two arithmetic and three logical operations as well as register-increment, -decrement, and constant-loading instructions. It also has bit-set, bit-clear, and bit-test instructions.

Its program-flow instructions include skip on test, conditional and unconditional jump, and a subroutine call.

The high four bits of each eight-bit instruction specify its type. Most instructions use their lower four bits to address one of the 16 RAM registers. For example, there are 32 move instructions — 16 copy the accumulator to another register and 16 copy another register to the accumulator.

ARITHMETIC AND ACCUMULATORS

The accumulator serves as the destination as well as a source for all two-parameter operations except multiplication. That is, both arithmetical operations and all three logical operations between two variables use the accumulator as one input. Any of the 16 registers can act as the other input. The result ends up in the accumulator. If it needs to be placed in another register, a specific MOVE instruction is required.

Table 3. The Picaro supports 37 instructions. In most, the upper four bits specify the instruction type while the lower four bits reference a register.

Sixteen unique instructions

Opcode
Instruction
Function

00000000
NOP
Does nothing

00000001
PRTD
Set port direction from next byte

00000010
PRTO
Move A to port

00000011
PRTI
Move port to A

00000100
SERO
Send A to serial out

00000101
SERI
Put serial input in A

00000110
TYPE
Print counted string from EEPROM

00000111
SWAP
Swap upper and lower nibbles of A

00001000
SHL
Shift A left

00001001
SHR
Shift A right

00001010
INXO
Move A to indexed register

00001011
INXI
Move indexed register to A

00001100
WAIT
Use next byte as wait period

00001101
MULT
Multiply registers 2 and 3

00001110
RET
Return from subroutine

00001111
EXIT
Return to System



Arithmetic and logic instructions

    RRRR is a register address

If RRRR = 0, the second operand is the next program code byte

0001RRRR
AND R A
:= A and R affects zero flag

0010RRRR
OR  R A
:= A or R affects zero flag

0011RRRR
XOR R A
:= A xor R affects zero flag

0100RRRR
ADD R A
:= A + R affects zero and carry flags

0101RRRR
SUB R A
:= A – R affects zero and carry flags



Register move instructions

If RRRR = 0, the move is to or from the flags register

0110RRRR
MOVR A R
:= A no flag effect

0111RRRR
MOVA R A
:= R no flag effect



Move immediate instructions

1000XXXX
MVIL A
:= 0000XXXX no flag effect

1001XXXX
MVIH A
:= XXXX0000 exor A no flag effect



Bit set, clear and test

1010FBBB
SET/CLR
Set bit BBB of A to the value F

1011FBBB
SKIS/SKIC
Skip two bytes if bit BBB = F



Register increment/decrement, affect zero flag

1100FRRR
INC/DEC
Increment RRR if F=0, decrement if F=1



Program control, two-byte instructions, second byte is address

PPP is the destination page.

Opcode
Instruction
Function

1101FPPP
JMP/CALL
Unconditional Jump (F=0) or Call (F=1)

1110FPPP
JNC/JC
Jump if carry flag = F

1111FPPP
JNZ/JZ
Jump if zero flag = F

Accumulator bits can be changed one at a time by bit-set and -clear instructions. There are eight of each, one for each bit. Accumulator bits can also be tested. Eight instructions specify to skip the next instruction if the corresponding bit is a 0, and another eight – test for a 1.

Four- and eight-bit constants can be loaded into the accumulator by the 32 MOVE IMMEDIATE instructions. Of these, 16 set the accumulator to a four-bit value and the other 16 XOR a four-bit constant with the upper four bits of the accumulator. So, loading an arbitrary eight-bit value requires two instructions, but a four-bit constant requires only one. In theory, since the accumulator is also Register 0, it’s a legal input operand. Since the only instruction that’s really useful is ADD 0 (which doubles the accumulator), I preferred using the five Register 0 codes to perform immediate operations on the accumulator. That is, the next byte in the program code is the second operand.

Move operations between the accumulator and Register 0 are also useless, so the flags register is treated as Register 0 for fetch and store instructions only. Therefore, the flag bits can be set, cleared, and tested under program control, thus implementing skip-on-carry and skip-on-zero operations. The accumulator can be shifted left and right through the carry bit, and its upper and lower four bits can be swapped.

INCREMENT AND DECREMENT

One irregularity in the instruction set is that there are only eight register-increment instructions and eight register-decrement instructions. (I ran out of codes.)

Only the lower eight registers can be incremented and decremented, but that shouldn’t be a problem. There’s also no specific register-clear instruction. You need to load the accumulator with 0 and move it to the register.

SPECIAL CODES

Unique instructions, such as port input and output, are carried out by the 16 opcodes whose high four bits are 0. Allocation of the port bits to inputs or outputs is done on a bit-by-bit basis by the PRTD instruction. It takes the next code byte and writes it to the PIC’s port direction register. A 1 bit sets an input and a 0 bit an output.

Two instructions of special interest are the indexed read/write pair. By using Register 1 as an index, not only can these instructions access any of the 16 RAM locations, but they can also read and write the upper 240 bytes of page 7 of the EEPROM. Since this area is addressable as program memory, it can be loaded with tables of constants at upload time. The indexed write instruction, dare I mention it, lets the program modify itself. Since anything written is unaffected by a power–down, it’s the ideal place to store measurement results. However, when a byte is written to this area, there is an 8-ms timeout before normal operation resumes.

The TYPE instruction reads the next code byte and uses it as a count to output a string from the next n bytes of program memory to the serial port. This allows the program to communicate with people. “Take me to your leader?”

WAIT also reads the next code byte. It uses it as a time delay in half-millisecond units, so you can implement a time delay from 0.5 to 128 ms.

The MULT instruction multiplies Registers 2 and 3. It puts the 16-bit result back in the same registers with the more significant byte in Register 3.

PROGRAM-FLOW CONTROL

There are six program-flow instructions — unconditional jump, unconditional call, jump on carry set, jump on carry clear, jump on zero, and jump on not zero. They all require two code bytes. The first specifies the type of jump and contains the three-bit page code for the EEPROM, and the second specifies the address within a page. As well, the bit-test instruction conditionally skips the next two instruction bytes. That is, you can skip a jump or call instruction, an immediate instruction, a two-byte macro, or just a single- byte instruction plus a NOP.

SUBROUTINES

The ability to call subroutines was worth incorporating, but anything more than a single level of nesting was too much trouble in a machine with limited RAM space. Thus, when a subroutine is called, the next instruction address is stored in Registers 14 and 15. When a subroutine return executes, the contents of these registers become the new execution address. This arrangement has two side effects. One is that Registers 14 and 15 can be used as normal registers until you call a subroutine. The other is that you can jump to any instruction address by loading it into Registers 14 and 15 and executing a return. This lets you execute a computed jump, as you would need, for example, when implementing a case statement.

THE FLAGS REGISTER

The interpreter’s zero and carry bits are stored in the flags register and set by the result of an operation. (The carry bit uses the Intel convention, not the Microchip one. It is cleared if the result of a subtraction is positive.)

The flags register also has an interrupt enable flag. Clearing this bit causes unexpected characters at the serial port to be ignored. If it’s set, an unexpected character acts as a user interrupt (i.e., it causes an automatic return to the system).

Another bit controls the data rate used when returning to the system. If it is set, the system default rate is used (i.e., 9600 bps). If it is cleared, the data rate remains at the preset rate. Three bits of the flags register store this data rate. This can be set from 300 to 38,400 bps by setting these three bits from 111 to 000. Writing to the flags register (via MOVR 0) sets up the new data rate. Table 4 summarizes this information.

Table 4. The flags register contains the zero and carry bits and also sets the bit rate of the serial port.

Bit
Function

0
Interrupt enable. Normally set

1
Data rate. Set = revert to 9600 bps

2
Carry flag, set by overflow or borrow

3
Zero flag, set by result = zero

4
Low bit of the data-rate setting

5
Middle bit of the data-rate setting

6
High bit of the data-rate setting

7
Reserved for timer control

PROGRAM COUNTER

The EEPROM has the useful property, that once you have sent a memory address to it, you can read sequential bytes indefinitely without sending a new address. You can execute instruction after instruction without worrying about the current program address. To execute a jump, send a new address to the EEPROM since you don’t care where it was before the jump.

Unfortunately, when you call a subroutine, you must know where to return to. The bad news is that there’s no method of reading back the address counter of the EEPROM, so you have to track the current program address.

Tracking is done via a phantom program counter—two bytes of the system RAM which track the internal counter of the EERPOM. Every time an instruction is executed, the phantom program counter is incremented, and every time a jump is made, the new address is loaded into the EEPROM and phantom counter. When a subroutine is called, the phantom counter’s contents are saved as the return address.

The only other use for the phantom counter is when an indexed read or write to the EEPROM occurs. The EEPROM’s address counter is changed to point to the indexed address on page 7. After the operation, the EEPROM’s program address counter is automatically restored from the phantom counter. The interpreter has no direct access to the phantom counter, but if you want to implement a program–counter–relative operation, you can read it indirectly by executing a call to the next instruction. This action copies the program counter into Registers 14 and 15.

TIMER REGISTER

The microcontroller has a timer register, which can count pre‑scaled clocks or external events. In this implementation, it controls the timing of the serial port. The pre‑scale ratio is changed to set different data rates. Therefore, the timer input pin of the parallel port has no function. You can change this if you want to use the timer for something else. However, the interpreter’s instruction performs some of the same functions.

Uploading a Program

You can send a code file to Picaro whenever it’s in system mode and waiting for a command. This uses the command, which heads the code file to be uploaded.

The file format is:

Ulf
:0AA0lf
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXlf
- - - more code lines - - -

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXlf

XXXXXXlf

lf
where lf is a line-feed character and 0AA0 is the program’s start address. All uploads must start at an address whose lowest four bits are zero. Each code line except the last contains 32 characters, 16 hex bytes. The last line contains 1–16 bytes. All lines end with a single line-feed character. The upload terminator is a blank line (i.e., two successive line feeds).

Carriage-return characters (cr) may be used in place of line feeds. The system ignores all characters between the initial U and the “:”, so this is the place to insert a title or version information.

The upload link runs at 9600 bps unless you program it to be slower. To avoid halting the source device, each successive 16-byte line is stored in the PIC’s RAM as it is received, overwriting any existing contents. The stored bytes are then quickly transferred to the EEPROM while the line-feed character is arriving. The EEPROM then goes offline and writes them while the next 16 bytes are being transmitted. Picaro echoes a U to indicate that the file has been received and stored. This is followed by the “>” prompt for the next command.

PROGRAMMING PICARO
If you have experience in programming a register-based eight-bit microcomputer, such as any of the Intel 80xx series, learning and using this assembly language should be straight- forward. Once you figure out what you want your model to do, the easiest way to proceed is to break the functions down into manageable chunks you can pass parameters to.

So, to turn 10° right, call the subroutine with a parameter of 10. A sequence of subroutines, combined with tests and jumps, programs the desired operations. (Forth is the ideal language for this type of application, but that’s another article.)

Once your program is written in assembly language, you need to translate it into a list of instructions. I do this by hand, which is a strong motivation for keeping the language simple. The biggest job is tracking the instruction addresses since you need to specify where all the jumps are headed.

The listing must be converted into a text file using the 16 bytes per line format specified in the sidebar “Uploading a program.” Next, the computer can be turned on, put in system mode, and the program uploaded. The program can be examined and modified while in system mode. The system instruction starts execution from any address.

On power‑up or reset, Picaro uses the highest EEPROM byte, at address 7FFH, to tell it whether it should start executing the user’s program immediately or go to system mode and wait for instructions. If this byte is 0, it jumps to the user’s program. Any other value tells it to enter system mode.

Since blank EEPROMs seem to contain mostly 1‑s, Picaro should power up in system mode the first time you switch it on, so you can upload or edit a program. Once your program works, you can edit byte 7FFH to 0 so your program starts every time the model turns on. Listing 1 is a short sample program for testing Picaro. It can be typed in byte by byte in system mode or sent as a text file in upload format. If port bit 7 is high (default), the output is:

Hello

ABCDEFGHIJ

Ok
Listing 1. — First upload or type in the Picaro test program, and then enter G 000.

Addr    Mnemonic Code     Function
000     PRTD     01         Use next byte as port direction
001              F0         Low four bits are outputs
002     MVIL 5   85         Set accumulator to 5
003     PRTO     02         Write it to port
004     CALL     D8         Subroutine call, page 0
005              4A         Call address
006     PRTI     03         Read port
007     SHL      08         Shift MSB to carry
008     JC       E8         Jump if carry, page 0
009              13         Destination address

00A           TYPE     06         Send a string
00B                              05         String length
00C                              48         "H"
00D                              6F         "o"
00E                              77         "w"
00F                              64         "d"
010              79    "y"
011     JMP      D0    Carry on
012              1A
013     TYPE     06     Send a string
014              05     String length

015              48         "H"
016              65         "e"
017              6C         "l"
018              6C         "l"
019              6F         "o"
01A           CALL     D8         Send CRLF
01B                              4A
01C           MVIL 10  8A         Specify count
01D           MOVR 4   64         Store count
01E           MVIL 1   81         Specify low nibble
01F           MVIH 4   94         Specify high nibble
020     SERO           04         Send character
021     INC 0    C0         Increment character
022     DEC 4    CC         Decrement count
023     JNZ             F0         Jump back unless done
024              20         Destination address
025     CALL           D8         Send CRLF
026                 4A
027     MVIL 13  8D

028     MOVR 1   61    Set index to 13
029     MVIL 10  8A    Accum = 0AH
02A     MOVR 3   63    Set counter to 10
02B     MVIH 5   95    Accum = 5AH
02C     INXO     0A    Write to indexed register
02D     ADD 0    40
02E              29    Add 29H to accu
02F     DEC 1    C9    Decrement index register
030     DEC 3    CB    Decrement counter
031     JNZ      F0    Jump to loop
032              2C
033     MOVA 13  7D    Start testing arithmetic
034     XOR 8    38
035     AND 6    16
036     ADD 11   4B
037     OR  4    24
038     SUB 6    56
039     SWAP     07
03A     XOR 0    30     Check result

03B              67

03C     JZ       F8

03D              45
03E     TYPE        06

03F                 04
040                 4F     "O"
041                 6F     "o"
042                 70     "p"
043                 73     "s"
044     EXIT        0F     Return to system

045     TYPE        06
046                 02
047                 4F     "O"

048                 4B     "k"
049     EXIT        0F     Return to system

        Subroutine, print CRLF
04A     MVIL 13     8D     CR to Accumulator
04B     SERO        04     Send serial character
04C     MVIL 10     8A     LF to Accumulator

04D     SERO        04     Send serial character
04E     RET         0E     Return

Upload file

U

:0000

01F08502D84A0308E8130605486F7764

79D01A060548656C6C6FD84A8A648194

04C0CCF020D84A8D618A63950A4029C9

CBF02C7D38164B2456073067F8450604

4F6F70730F06024F4B0F8D048A040E

If port bit 7 is held low, Hello is replaced by Howdy. If the last line is Oops, then something went wrong.

It would be easy to write an assembler for this language. I didn’t need to myself, and in any case, my software runs on an Amiga and wouldn’t be much use to WIntel users. Perhaps you can fill the gap.

USING THE SERIAL PORT

Normally, the serial port provides direct interaction with the user in system mode. However, the user’s program can also transmit and receive serial data, and it can use a different data rate from the 9600 bps used in system mode. This allows the use of longer range, narrower bandwidth communication paths.

Ideally, serial input only takes place when the computer is waiting for it (e.g., when it has sent a request for new instructions). But, you have to decide how to handle unexpected input. You could ignore it via an interrupt disable flag, but then you have to do a hard- ware reset if you want to plug in a terminal and diagnose a problem.

If you don’t ignore unexpected inputs, you have to decide whether they’ll come from the low-speed communication link or the terminal. In the first case, you set the rate reversion flag to “preset” and in the second case to “default.”

The same flags control what happens when the program executes a return-to-system instruction. “Tell me what to do next” may be more easily handled by uploading new code over the communications link in system mode, rather than by choosing from a limited number of preset actions in interpreter mode.

GETTING STARTED

To make Picaro work, the system firmware must be written into the EPROM of the PIC chip. There are two ways to do this.

If you have a UV eraser, a PIC assembler, and a programmer, you can buy your own windowed PIC chip and download the firmware from the Circuit Cellar’s Web site. Or, you can purchase the preprogrammed parts from me.

WRITING ASSEMBLY LANGUAGE

Picaro’s assembly language is supposed to be general-purpose, but your application may require an operation that can’t be readily synthesized from combinations of the existing instructions but that’s still within the PIC’s capabilities. In this case, you’re welcome to modify the source code, but please do not make commercial use of this code without my permission.

The firmware is divided into two blocks—system and interpreter—and occupies ~70% of the 1-KB EPROM. A gap between the blocks keeps the interpreter and system code on separate EPROM memory pages to avoid having to swap the page‑select bit too much. So, you can change the interpreter’s instruction set by modifying only the second page.

In operation, the interpreter reads an instruction, saves its lower four bits as a possible register address, and uses the upper four bits to make a calculated jump to one of 16 handlers. These handlers use the saved lower four instruction bits as a register address, immediate data, or a flag bit and partial program jump address.

If the upper four bits are zeros, the handler makes a second calculated jump, this time based on the lower four instruction bits. This jump ends up at one of the 16 sub‑handlers containing the code for the 16 unique instructions. After every instruction, the interpreter returns to a housekeeping routine, which sets the zero and carry flags and advances the phantom program counter.

I ended up with no spare codes. At one point, I even implemented an escape instruction, which used the following byte as a pointer to (potentially) 256 further instructions. But, I found I didn’t need it and took it out again. If you want to add a function, you need to insert an escape code or replace an existing function by changing its handler.

The only reason to change the system firmware on the first EPROM page is to use a different crystal frequency. Then, the constants controlling the data rate have to be changed, and if the crystal frequency is higher than 6.144 MHz, NOPs need to be inserted into the EEPROM read and write routines.

DESIGN YOUR OWN

So, I finally got to write my own assembly language. I haven’t done as much with it as I had expected, but I’m passing it on in the hope that you’ll find it useful. If you have the tools to program PIC chips, you can follow my lead in designing your own custom computer. Picaro makes a pleasant change from systems with 16-MB minimum memories and operating systems no human being I can comprehend.

Tom Napier has worked as a rocket scientist, health physicist, and engineering manager. He has spent the last nine years developing spacecraft communications equipment but is now a consultant and writer. In his free time, he develops neat test instruments, debunks pseudo‑science, and writes in Forth on an Amiga 3000.

SOFTWARE

Complete documentation and source code for Picaro is available via the Circuit Cellar Web site. www.circuitcellar.com
SOURCES

EEPROM and PIC microcontroller

Microchip Technology, Inc.

2355 W. Chandler Blvd. Chandler, AZ 85224-6199 (602) 786-7200

Fax: (602) 786-7277 www.microchip.com
Digi‑Key Corp.

701 Brooks Ave. S Thief Falls, MN 56701-0677 (218) 681-6674

Fax: (218) 681-3380

Picaro kit

Preprogrammed, non‑windowed PIC16C56, 24LC16B EEPROM, 6.144-MHz crystal, and disk with Picaro firmware and manual ...$15.

Tom Napier
P.O. Box 3155

Maple Glen, PA 19002-8155

� EMBED PBrush  ���








www.circuitcellar.com                         Circuit Cellar INK®                    Issue 93 April 1998
www.circuitcellar.com                         Circuit Cellar INK®                    Issue 93 April 1998

[image: image2.png]= vz

el 1 RL . e
IJuF Ie.&)luF Ie.oJuF 1ekQ PIC16CSE ISDA Ae?
= 4 12 1N 3 SER
[mer  Redl scL ma2-
= RTCC RAL] i ur WP z
rAZ| i CLOCK =L RNL
Pouer Table " A o IDATA Lo
Far: [750 [Gnd b e £
Uilia]s Taanhz ReofS -
ve [ & | 4 L s oce RBL
) 5
ree|
REES B
R4 gR3 i To
ke Z1ke Som|h i
REG]| e 2
13 il
re7) =y
=
RS 2RO ZRIL £RI2 ZRI3 SRL4 ZRIS ZRIS
m =1 - Toka $1oke 3 10ke 3 10ke 3 10ke 3 10Kke 5 1oke 3 1ok
Serial Port s e
N e
R 2R7 .
Toke 3 ioke 2 95 __ Fepcion
< [ J,c92 “Fart
R8 al 1 i
fe LEEae I
= +50
=




_1337111462

_1337112816

